Denoising by Intrinsic Tensor Sparsity Regularization ” : Supplementary Material

نویسندگان

  • Qi Xie
  • Qian Zhao
  • Deyu Meng
  • Zongben Xu
  • Shuhang Gu
  • Wangmeng Zuo
  • Lei Zhang
چکیده

In this supplementary material, we provide the proofs to Theorems 1 and 2 presented in the maintext. We also present more clarifications on the parameter settings in our experiment. Furthermore, we show more experimental results to further substantiate the effectiveness of our method. 1. Proofs to Theorems 1 and 2 We first give the following Lemma [4]. Lemma 1. (von Neumann’s trace inequality) For any m × n matrices A and B, with σ(A) = [σ1(A), σ2(A), ...σr(A)] T and σ(B) = [σ1(B), σ2(B), ...σr(B)] T , where r = min(m,n), being the singular values of A and B, Then tr(AB) ≤ σ(A)σ(B). The equality is achieved when there exists unitarians U and V that A = UΣAV T and B = UΣBV T are SVDs of A and B, respectively. Based on the result of Lemma 1, we can deduce the following theorem. Theorem 1. ∀ A ∈ Rm×n, the following problem:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte-Carlo SURE: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms - Supplementary Material

This material supplements some sections of the paper entitled “Monte-Carlo SURE: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms”. Here, we elaborate on the solution to the differentiability issue associated with the Monte-Carlo divergence estimation proposed (in Theorem 2) in the paper. Firstly, we verify the validity of the Taylor expansion-based argumen...

متن کامل

Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint

Remote sensing images have been used in many fields, such as urban planning, military, and environment monitoring, but corruption by stripe noise limits its subsequent applications. Most existing stripe noise removal (destriping) methods aim to directly estimate the clear images from the stripe images without considering the intrinsic properties of stripe noise, which causes the image structure...

متن کامل

Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems Supplementary Material

The supplementary material contains the proof of Remark 3.1 as well as some additional information about the numerical experiments that contribute to the understanding of the main paper. We present detailed qualitative and quantitative evaluation results for each of our two (demosaicking and deconvolution) exemplary linear inverse image reconstruction problems. These results include parameter v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016